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Abstract— Today, autonomous vehicle (AV) navigation sys-
tems rely solely on local sensor data feed for safe & reliable
navigation. However, it is not uncommon for sensor data to
contain erroneous measurements resulting in false predictions,
classified as either false positives (predict non-existent obsta-
cle) or false negatives (e.g., missed obstacle). In this paper,
we propose a methodology to identify and minimize false
negatives in autonomous vehicle navigation, since these are
arguably the most dangerous. According to the methodology,
each autonomous agent simultaneously localizes and maps its
local environment. This map, in turn, is encoded into a low-
resolution message and shared with nearby agents via DSRC,
a wireless vehicle communication protocol. Next, the agents
distributively fuse this information together to construct a
world interpretation. Each agent then statistically analyzes its
own interpretation with respect to the world interpretation
for the common regions of interest. The proposed statistical
algorithm outputs a measure of similarity between local and
world interpretations and identifies false negatives (if any) for
the local agent. This measure, in turn, can be used to inform
the agents to update their kinematic behavior in order to
account for any errors in local interpretation. The efficacy
of this methodology in resolving false negatives is shown in
simulation.

I. INTRODUCTION

Safety and reliability are the paramount goals of au-
tonomous vehicle (AV) navigation systems, but contempo-
rary AV systems face critical obstacles along the road to at-
taining these goals. One such obstacle is ubiquitous reliance
on a data feed from local sensors, and the accuracy of those
data. It is not uncommon for sensor data to contain erroneous
measurements that reduce overall safety and confidence in
navigation. Erroneous measurements may be a result of
failing sensor health, sensor drift, bad calibration, and/or
temporary conditions such as inclement weather. Those data
may subsequently produce false predictions, which can be
classified as either false positives or false negatives. In
the context of AV navigation, a false positive arises when
vehicle sensors predict a non-existent obstacle, whereas a
false negative may manifest in the form of a missed obstacle,
an imperfect reading of the road lane, an incorrect speed
estimation of other vehicles, etc. Though false positives
may influence safety in an indirect manner, false negatives
significantly affect navigational safety. This observation is
supported by the fact that the majority of autonomous car
accidents reported today are due to false negatives [1], [2].
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One example of the direct consequences of this problem
occurred in March 2018. In that instance, erroneous sensor
readings caused Uber’s self-driving vehicle ran straight into
a woman who was walking her bicycle across a highway
in Tempe, Arizona, resulting in her sad demise [3]. While
it is true that there are significant efforts in the scientific
community to use vision-based machine learning algorithms
that will identify and isolate false negatives by recogniz-
ing and classifying environmental scenes [4][5][6], these
methodologies depend heavily on extensive and exhaustive
training for reasonable performance. More importantly, these
methods do not directly address issues related to sensor drift
or environmental noise.

Sensor drift is another major contributing factor to false
negatives in local interpretations. Traditionally, issues re-
lated to sensor drift have been addressed by online-sensor
calibration routines, which try to correct for persistent
errors[7] [8] [9] on an ex-post-facto basis. These techniques
usually depend upon more robust sensors, such as odometers,
to calibrate the others. However, there are two major short-
comings with these methodologies: First, since calibration
occurs in a dynamically changing environment, the reliability
of correction degrades drastically in certain cases, and the
routine must be repeated. Second, these routines have little
or no ability to correct errors that manifest due to poor
environmental conditions. Since it is difficult to quantify the
source of error in dynamic navigation, some of the techniques
presented are incomplete solutions to the problem of false
negatives, and false negatives remain difficult to detect. For
AV driving and navigation to succeed, it is critical to identify
and minimize the number of false negatives.

In this paper, we explore a methodology for identifying
and minimizing false negatives in local environment interpre-
tation by sharing and fusing sensor data collected by close-
proximity autonomous or intelligent vehicles. For each agent,
the methodology compares the local obstacle maps with
maps generated by other close-proximity agents to identify
false negatives in local interpretation.

According to the methodology, each autonomous agent si-
multaneously localizes and maps its local environment. This
map, in turn, is encoded into a low-resolution message and
shared via Dedicated Short Range Communication (DSRC),
a wireless vehicle communication protocol. Next, the agents
distributively fuse this information together to construct a
global interpretation. Each agent then statistically analyzes
its own interpretation with respect to the global interpretation
for the common regions of interest. The proposed statistical
algorithm outputs a measure of similarity between local and



global interpretations and identifies false negatives (if any)
for the local agent. This measure, in turn, can be used
to inform the agents to change their kinematic behavior
in order to account for any errors in local interpretation.
Finally, each agent records the measure and instances of
erroneous interpretations, which improves the analysis and
quantification of sensor health over time.

As mentioned above, the information is shared between
and among vehicles via DSRC signals. DSRC is a two-way
short-to-medium-range wireless communications capability
that permits very high-frequency data transmission critical
to active communications based safety applications. DSRC
operates on a dedicated frequency of 5.9 GHz that guarantees
communication latencies in the 100-millisecond range. The
DSRC protocol provides infrastructure for connected vehi-
cles and enables sensor data sharing between the vehicles.
The SAE J2735 [10] standard provides guidelines for ex-
change of safety-critical data between vehicles (V2V), and
between vehicles and infrastructure (V2I) [11]. We chose
DSRC for this work because it provides a robust, low-latency
dedicated communication infrastructure. However, the pro-
posed methodology operates independently of the DSRC
protocol. Any low-latency, high-reliability communication
protocol can be used with the proposed methodology to
achieve identical performance.

On the surface, our methodology bears resemblance to
distributed SLAM techniques, in that the main objective is to
build local maps in a computationally efficient manner using
multi-agent system concepts [12], [13], [14], [15]. However,
in our framework, the main objective of each autonomous
agent is to identify and track dynamic agents (e.g., cars,
pedestrians, bicyclists) in its field of view, and share its belief
about these dynamic agents with other close-proximity au-
tonomous agents in the surrounding environment. As a result,
each autonomous agent will have the ability to statistically
compare its own belief about its environment with those of
other agents, and identify and correct for any false negatives
in its own local interpretation.

The rest of the paper is organized as follows: Section 2
presents details of the methodology, Section 3 describes the
details of simulation experiments, Section 4 discusses the
performance characteristics of the algorithm, and Section 5
provide conclusions and point out future lines of work.

II. METHODOLOGY

As mentioned in Section 1, we explore and develop a
methodology for sharing and fusing sensor data between
multiple autonomous vehicles that have overlapping views
of the environment. The methodology focuses on identifying
and minimizing the number of false negatives in sensing and
interpretation.

Before presenting details of the methodology, it is impor-
tant to discuss modeling assumptions made to ease some con-
straints: First, we assume that only a minority of autonomous
vehicles have strong noise associated with their data. In other
words, this paper does not address pathological cases like
when data from all the agents are highly erroneous. Second,

the simulator incorporates the presence of only agents such
as vehicles, pedestrians, bicycles etc. in the system.

The methodology can be divided into the following steps:
1) Localization, Segmentation, and Super Frames; 2) Data
Fusion along with Local vs Global interpretation. The sub-
sequent text in this section provides further details on each
step.

A. Localization, Segmentation, and Super Frames

An autonomous agent must first understand its surround-
ing and its current location for the purpose of navigation.
Today, autonomous vehicles are equipped with local sensor
systems like LiDAR and camera to build an interpretation
of the surrounding world. This is done by scanning different
obstacles and landmarks within the field of view. Usually, a
LiDAR returns a 360-degree scan of the obstacle field which
in turn can be converted into an occupancy grid. In turn,
data segmentation algorithms are used to associate a group
of points with a particular obstacle. In this paper, we emulate
a LiDAR sensor to generate a obstacle grid and we segment
the different classes of obstacles using a fully convolutions
neural network [16].

The resulting map after the data segmentation step is
translated into an occupancy grid that encodes the estimated
distances to the obstacles, and the measure of confidence
associated with them. We utilize the Extended Kalman
Filter [17] algorithm to track and estimate the obstacle loca-
tions. The output of a EKF tracker is the pose estimation for
the different segmented obstacles which can be transformed
into a map that encodes the distance to all perceivable
obstacles and a measure of the accuracy in form of variance
into an occupancy grid.

Every EKF cycle, the agents record the estimated location
of each obstacle, and the associated variance into a frame.
Each agent, identifies and tracks information about the dy-
namic agents across frames. This information along with the
vehicle’s pose estimate are in turn formatted into a DSRC
SAE J2735 message, and shared over DSRC communication
channel. We refer to this low-resolution message as a super
frame. In this paper, the agents share super frames at a
frequency of 1 Hz using the SAE J2735 Basic Safety
Message(BSM) Part 2 structure. The BSM-2 encodes local
vehicle kinematics along with a low resolution super-frame.

B. Data Fusion

Autonomous vehicles within the DSRC range (1000 feet),
share and receive super frames every second. As mentioned
earlier, the rationale behind sharing super frames is that the
agents can compare and validate local interpretations of their
surroundings with those of others. An individual agent must
first identify regions of interest in its field of view that
overlap with that of other agents as a comparison can be
made only in regions that are observable to the other agents.

Furthermore, to account for different orientations of agents
the data from super frames should be transformed into a com-
mon frame of reference. Therefore, the data received from
different super frames are transformed into the coordinate



frame of the local agent. Euclidean translation and rotation
transformation is used for this purpose.

Once the data points have been transformed, we must fuse
each data point from the different interpretations from close-
proximity agents to the data points from the local vehicle.
This data association is usually done using the Density-based
spatial clustering of applications with noise (DBSCAN) [18].
The output lets the agent map its own local data points to
points in the interpretations from the different agents. The
data points in each cluster, except the data points from the
local view, are fused with each other using a kernel mixture
model. Each data point is basically a probability density
function (PDF) whose mean is the distance from the local
sensor.

To correct for false negatives, each agent then statistically
analyzes its own interpretation with respect to the world
interpretation (fused data) for the common regions of in-
terest. A Maximum Deviation Test (MDT) is used for this
purpose [19].

Algorithm 1: Maximum Deviation Test
F(x)l = CDF for the local interpretation;
F(x)g = CDF for the global interpretation;
δtol = error tolerance threshold;
s = 0 (initiate test score);
for p in [0,100] do

δ =
F−1

l (p)−F−1
g (p)

F−1
l (p)

∗100;

if abs(δ )≤ δtol then
s += 1

end
end
if s≥ smin then

return density functions are statistically similar
end

As the name suggests, the maximum deviation test is a
statistical technique to quantify statistical differences be-
tween two density functions. The methodology employed
here first generates cumulative density functions (CDFs) for
local and global interpretations, and then generates a test
score that measures statistical similarity. Here the test-score
is nothing but the number of percentile values in a local
interpretation CDF that are within user-defined tolerance
bounds from the global interpretation. If the test score is
less than a preset threshold, then it can be inferred that
local and global interpretations are statistically significantly
different, suggesting the presence of a false negative. Hence
through the MDT we are able to track false negatives in
autonomous navigation. Pseudo-code for the methodology is
given in Algorithm 1:

An example where the test indicates a false negative is
presented in Figure 1. The blue curve corresponds to the
data interpretation from the local agent. In this example, the
δtol is set to 5%, and smin is set to 95. The MDT test score
turns out to be 85, indicating the presence of a false negative.

Fig. 1. MDT identifies a false negative

III. SIMULATION FRAMEWORK

Testing the efficacy of the proposed methodology in sim-
ulation raises three broad requirements. First, the simulator
should be able to implement microscopic traffic flow char-
acteristics of individual vehicles (e.g., position, velocity, car-
following, and lane changing behavior). Second, the simula-
tor should be able to simulate the DSRC communication
protocol. Third, simulator should be able to simulate the
behavior of autonomous vehicles, which includes generating
LiDAR scans, LiDAR data segmentation with respect to
agents, building obstacles maps and finally comparing the
fused view with respect to the local view via the Max
Deviation Test. No existing simulator satisfies all three
requirements. However, the combined capabilities of the
open source simulators SUMO and ROS do satisfy all three
requirements. Therefore, we developed a software package
that provides an interface between SUMO's microscopic
traffic simulator and ROS.

SUMO can generate a traffic networks, implement traffic
rules, and manage and maintain microscopic traffic flow
characteristics, and the Veins library in SUMO simulates the
DSRC communication protocol. Moreover, the behavior of
traffic objects inside SUMO can be accessed and manipulated
through the TraCI API. This feature is very critical for
simulating and controlling autonomous vehicle behavior.
ROS is an ideal choice because it has useful repositories
for simulating autonomous behaviors that are reflective of
the real-world.

The software architecture is detailed in Figure 2. As can
be seen, SUMO sets up the traffic and vehicular environment
and updates vehicle motion models at each simulation step.
Some of the vehicles in SUMO are treated as autonomous.
TraCI generates an environment (map) grid to simulate local
sensor data. TraCI simulates a 360-degree Velodyne LiDAR
that generates the occupancy grid for each autonomous
vehicle. It should be noted that TraCI passes the local state
and sensor information for each autonomous vehicle through
a noise model to emulate real-world sensor data that are
generated by an autonomous vehicle. The Map grid data
generated are used by each agent to develop local obstacle
maps, which are later processed into super frames. The TraCI
API, also sends information related to other autonomous
vehicle’s locations and instantaneous kinematics are passed



Fig. 2. High-Level Schematic of the Simulator

to ROS via local DSRC channel. Lastly, super frames are
created for each autonomous vehicle and shared with other
autonomous vehicles within DSRC range, through the DSRC
channels via TraCI.

A. Experimental Design

The objective of the proposed methodology is to reduce
false negatives in sensing and to enhance the safety and
reliability of autonomous vehicle navigation. The method-
ology’s efficacy is best tested in a high-risk accident-prone
environment. It is generally accepted that the combination
of high-speed merges along with blind spots makes lane
changing on a highway highly accident-prone [20].

We designed an experiment to simulate lane changing
behavior on a 2-mile-long straight highway with 3 lanes.
Furthermore, the freeway segment has three on and off
ramps located equidistant from one other. The following
three scenarios are considered:
• Scenario - 1: Total cars = 50; % AVs = 50
• Scenario - 2: Total cars = 100; % AVs = 50
• Scenario - 3: Total cars = 200; % AVs = 50
Three cases were created for each scenario with the

percent of AVs with erroneous sensors set to 5%, 10%, and
20%.

For a given scenario, and a case, it can be inferred that
the number of cars in the system, % AVs, and % AVs
with erroneous sensors is constant. One needs to keep two
objectives in mind to ensure thorough testing: 1) vary vehicle
arrival pattern for a given input volume; and 2) for a given
vehicle arrival pattern distribute the location of autonomous
cars, and AVs with erroneous sensors. To meet the first
objective, we ran five Monte Carlo simulations with five
random seeds and to address the second objective, ten Monte
Carlo simulations are run to uniformly distribute location of
AVs, and AVs with erroneous sensors. Hence, results for
a given scenario, and cases are aggregated over 50 Monte
Carlo simulations. Algorithm 2 presents pseudo-code for the
simulation process

Algorithm 2: Simulator Process Flow
δt = 100 millisecond (initialize time step);
t = 0 (initiate simulation time);
At = set of all AVs in the system during time t;
ai = autonomous vehicle ’i’;
A j = set of AVs within DSRC range of ai;
T = time when all the vehicles exit the simulation;
while t ≤ T do

freeze simulation frame ;
for ai ∈ At do

TraCI sends local sensor feed to ROS;
builds obstacle maps using EFK;
update kinematic model;
encode location and speed info into BSM-1 ;
ROS sends back BSM-1 to SUMO via TraCI;
receives BSM-1 via Viens from all a j ∈ A j;
if t%1000 == 0 then

ROS encodes occupancy grid into
super-frame;

ROS sends super frame to SUMO via TraCI;
receives BSM-2 via Viens from all a j ∈ A j;
process message(s) to develop world
interpretation;

compares local interpretation with fused
interpretation;

identify false negatives and update
kinematic model;

end
end
SUMO updates collision model & reports potential
collision ∀ ai ∈ At ;

unfreeze simulation frame;
sleep(δt );
t += δt ;

end



IV. ANALYSIS OF RESULTS

As mentioned earlier, this research proposes a method-
ology that identifies and minimizes false negatives in au-
tonomous vehicle navigation by sharing and fusing sensor
data of close-proximity autonomous or intelligent vehicles.
Simulation experiments are designed to evaluate the effec-
tiveness of this methodology and this section focuses on
the analysis of the results. However, before proceeding any
further, we will first define what successful resolution of a
false negative means in the simulation. As stated before,
ROS controls vehicle kinematics for autonomous vehicles
while SUMO controls vehicle kinematics of non-autonomous
vehicles [21].

Every simulation step, path planning for an individual au-
tonomous vehicle is done in ROS using its local environment
interpretation, and after correcting for any false negatives.
These path planning decisions are passed to SUMO via
TraCI for implementation. In turn, SUMO cross-validates
these control decisions and makes corrections in case of
an impending collision. In that sense, if SUMO implements
vehicle path planning decisions without making any adjust-
ments, then there are no inconsistencies in the autonomous
vehicle’s perception of its surroundings; otherwise, it can be
inferred that the algorithm failed to identify and correct false
negatives. Therefore, every simulation step, the following
information is logged for every autonomous vehicle in the
system: 1) number of vehicles it interacted with for building
the collaborative world interpretation; 2) a binary indicator
value for any false negative resolution; 3) path planning
decisions computed using local sensor data and 4) SUMO’s
path planning decisions.

We post-processed simulation log files to compute the
number of instances in which the proposed algorithm was
able to successfully resolve false negatives. The results are
grouped by the number of autonomous vehicles involved
in the global interpretation (2, 3, 4, and 5 or more vehicle
interactions). Figure 3 summarizes these results. It contains
four subplots: each subplot presents a standard box plot for
% of times the proposed methodology successfully corrected
a false negative. Furthermore, each subplot contains nine
boxplots grouped by input volume and % of AVs with bad
sensors (red, blue, and green respectively representing results
for 5%, 10%, and 20% AVs with bad sensors). Black circles
in each plot represent median % success values, whereas the
values within the box represent the data within the inter-
quartile range. Based on the values presented in these plots,
it is easy to see that the proposed algorithm successfully
corrected false negatives about 95-99% of times the in case
of 5 or more autonomous vehicle interactions. These values
are between 89-96% for four vehicle interactions, 82-92%
for three vehicle interactions, and 72-82% in case of two
vehicle interactions.

The following inferences can be drawn based on these
observations: 1) the probability of resolving a false negative
increases as the number of autonomous vehicles interactions
increase; 2) the variance in resolving a false negative also

decreases with increased number of interactions; 3) the prob-
ability of resolving a false negative decreases with increased
% in autonomous vehicles with bad sensors.

V. CONCLUSIONS & FUTURE WORK

In this paper we presented a methodology that identifies
and minimizes false negatives in autonomous vehicle navi-
gation by sharing and fusing sensor data of close-proximity
autonomous or intelligent vehicles. Using the methodology,
each autonomous agent simultaneously localizes and maps its
local environment. This map, in turn, is encoded into a low-
resolution message and shared via DSRC. Next, the agents
collaboratively fuse this information together to construct a
world interpretation. Each agent then statistically analyzes
its own interpretation with respect to the common regions of
interest. The proposed statistical algorithm outputs a measure
of similarity between local and world interpretations and
identifies false negatives (if any) for the local agent. This
measure, in turn, can be used to inform the agents to change
their kinematic behavior in order to account for any errors
in local interpretation.

The efficacy of this methodology is tested in simulation,
and based on the simulation results it can be inferred that
the methodology is effective in resolving false negatives. We
have identified several directions for future work:
• One direction is to extend the framework to identify

& minimize false positives.
• Another is to quantify the impact of the percentage

of autonomous vehicle penetration on the efficiency
of the algorithm (in the current paper, we only
considered a penetration level of 50

• Today, autonomous cars have no obvious way of
self-assessing sensor’s health. In principle, one can
revisit the data logged by the proposed methodol-
ogy to ascertain sensor’s health. This can be done
by looking at the number of instances erroneous
sensor readings that are corrected.

• In the current paper, equal weight has been given
to each obstacle map while generating the world
interpretation or fused map. Exploration of fused
map creation that takes into account sensor health
is another area for future work.

• Finally, it would be interesting to explore multi-
agent collaborative path planning. Such systems
could have profound impact on improving safety
of rural high-speed signalized intersections.
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