
An Auction-based Scheduling Approach to the Dynamic Dial-a-Ride Problem

Rebecca Martin1 , Isaac Kumar1 , Stephen F. Smith1

1Robotics Institute, Carnegie Mellon University
Pittsburgh, PA

{rebecca2@andrew.cmu.edu, isaack@cs.cmu.edu, sfs@cs.cmu.edu}

Abstract
The dial-a-ride problem (DARP) involves trans-
porting a set of customers from respective origins
to destinations within requested pick-up and drop-
off time windows, using a fixed fleet of transport
vehicles. In over-subscribed problem settings, the
main objective is generally to maximize the number
of requests that can be accommodated. In settings
where there is sufficient vehicle capacity to service
all requests, the objective shifts to some combina-
tion of minimizing overall travel time and minimiz-
ing number of vehicles used. One common applica-
tion of DARP is found in door-to-door transporta-
tion services offered to elderly or disabled travel-
ers. Most prior research into solution approaches
to DARP has focused on the static problem (where
all requests are known in advance), and emphasized
the use of offline optimization techniques and ex-
tended computation. These techniques are not vi-
able however in dynamic DARP domains, where
new requests continue to emerge through the day
and unexpected events continually force changes to
preplanned trips.
In this paper, we address this gap and focus on solv-
ing the dynamic DARP formulation. We propose
an online, auction-based scheduling strategy that
constructs a solution over time and hence is capa-
ble of efficiently incorporating new requests as they
arise (while also accounting for resource usage con-
straints and minimizing vehicle travel times). The
performance of the proposed algorithm is evaluated
on both a set of DARP feasibility benchmark prob-
lems from the literature and a large-scale real-world
paratransit dataset more recently introduced by an-
other incremental scheduling approach designed to
maximize the number of requests that can be ser-
viced in an oversubscribed context. In addition to
obtaining favorable comparative results, the real-
world paratransit data set is also used to analyze the
impact of temporal uncertainty on solution quality,
and to evaluate the potential for utilizing asymptot-
ically different cost functions as a basis for intro-
ducing customer priority.

1 Introduction
Dial-a-ride paratransit systems play an instrumental role in
providing equitable transportation services to special groups
of the population, such as the elderly or handicapped. With a
fare scheme comparable to that of a fixed-route transit, para-
transit provides shared-ride, door-to-door service with flex-
ible routes and schedules. The dial-a-ride problem (DARP)
aims to optimally schedule and dispatch transit vehicles to
satisfy requests for travel between pick-up and drop-off lo-
cations at specified times. A typical request in this context
provides details on pick-up and drop-off locations, number
of passengers, type of request, and preferred time windows
within which it needs to be fulfilled. The scheduling com-
ponent can be static, dynamic, or a combination of both. In
the context of static DARP, all the requests and available ve-
hicle fleet are known well in advance. In a dynamic DARP,
the requests are serviced on an ongoing basis with an ability
to increase the fleet size as needed. In the hybrid approach,
reservations made in advance permit the construction of day-
ahead (off-line) schedules, while the same day requests and
other events such as trip cancellations, vehicle breakdowns
etc. will need to be integrated into the current schedule as
such events occur.

Since first proposed by Wilson in 1971 [Wilson et al.,
1971], the Dial-a-Ride Problem (DARP) has been studied ex-
tensively in the literature. Recent research within the context
of static DARPs focuses principally on exact local neigh-
borhood search and insertion heuristic techniques, together
with a more accurate estimation model of fuel consump-
tion [Knörr et al., 2011] and service quality [Paquette et al.,
2012]. For example, exact methods such as branch-and-cut
[Cordeau, 2006] have been developed based on mixed-integer
programming for minimum cost. While considering complex
constraints such as capacity, duration, time windows, pair-
ing, and precedence, this method has a long execution time
for large-scale problems. To overcome this weakness, heuris-
tic approaches, as in GPU accelerated tabu search [Pandi et
al., 2018] and multi-atomic annealing heuristics [Ho et al.,
2018] for instance, present significantly improved efficiency
and near-optimal solutions to various degrees.

Compared to the static problem, far less work has been
done for dynamic DARPs. [Psaraftis, 1980] carried out one
of the first studies on the Dynamic DARP focusing on the
single vehicle case. In order to minimize the average ser-

vice period and reduce the dissatisfaction portion, an exact
O(n23n) algorithm was proposed to partially modify prior-
generated routes. Later [Horn, 2002] came up with software
level strategical heuristics to help solve large systems. It peri-
odically operates local search and accounts for practical con-
siderations like time window restriction, book cancellation,
and future request anticipation. Moreover, aiming at more
complex DARPs, [Beaudry et al., 2010] have developed a
two-phase algorithm, which considers the urgency level of
various requests and various modes of transportation as sub-
stantial constraints.

While most of these methodologies are capable of generat-
ing near optimal schedules on small problem sets, they don’t
scale well on large-scale real-world problems. Second, most
planning algorithms require long execution times to generate
a feasible schedule, thereby limiting their applicability in on-
line scheduling settings. To address these limitations, in this
paper, we propose an auction-based scheduler framework ca-
pable of providing a scalable approach to paratransit schedul-
ing while preserving the ability to optimize under real-world
constraints. Furthermore, the proposed framework partitions
requests into different importance classes, allowing it to ac-
count for the ”sense of urgency” of the trip, and search for
opportunities to minimize the trip duration without violating
the constraints of other trips. We evaluate the performance of
the framework on a set of synthetic benchmark problems that
have been studied in the literature and show the ability of the
auction-based scheduler in solving these challenging feasibil-
ity problems. Next, we test its efficacy on a real-world para-
transit scheduling problem and benchmark the performance
against the Generalized Task Swap (GTS) algorithm. Lastly,
we consider the impact of execution uncertainty on the effec-
tiveness of the proposed approach, versus reliance on a pre-
computed static solution.

The remainder of this paper is organized as follows. We
first formalize the dynamic dial-a-ride problem of interest in
Section 2. Next, in Section 3, the details of our proposed,
online solution procedure, which adopts an auction-based
scheduling approach, are presented. Section 4 provides an ini-
tial benchmark comparison of the approach’s performance on
a set of previously studied reference problems in the liter-
ature. Then, in Section 5 the results of further performance
analysis of the approach on a real-world paratransit schedul-
ing problem are presented. In addition to showing a favorable
performance comparison to the approach that originally intro-
duced this real-world problem, problem data is also utilized
to examine the ability to manage temporal uncertainty at ex-
ecution time and to incorporate request priority. Finally, in
Section 6, we summarize the main contributions of the work,
and discuss future research directions.

2 Problem Formulation
As mentioned at the outset, the dial-a-ride problem (DARP)
involves transporting a set of customers from respective ori-
gins to destinations within requested pick-up and drop-off
time windows, using a fixed fleet of transport vehicles. More
precisely, A DARP can be specified as a triple < R, V,D >
where R is the set of customer requests received over the

course of the scheduling horizon, V is the set of vehicles
available to service these requests, and D|L|×|L|×tod is a du-
ration matrix defined over the set of locations L contained in
the underlying road network. Each request r is a tuple that
specifies a pickup location lpr , a drop off location ldr , a pickup
window < testr , tprefr , tlstr >, a travel demand (i.e., number
of passengers) dr, and a priority prr. For purposes of this
paper, we assume just three priority classes: 1 (lowest), 2,
and 3 (highest). Each vehicle v has a total capacity Cv , and
an available capacity At

v at any time t over the scheduling
horizon. All vehicles v ∈ V start out at a particular location
ldepot. The duration matrix D|L|×|L|×tod compiles road net-
work distance and travel speed information into a functional
interface that, for any ordered pair of locations l1 and l2 and
travel start time tod, defines the expected travel duration from
l1 to l2.

A feasible vehicle schedule Sv then is a sequence of loca-
tions l1, l2, ...lk that (1) respects the expected travel duration
between any consecutive pair of locations in the sequence,
(2) satisfies the capacity constraint Cv of vehicle v at every
point in time over the scheduling horizon, and (3) ensures that
each request also satisfies a maximum ride-time constraint.
The overall objective is to produce a feasible fleet schedule S
that minimizes overall vehicle travel time.

3 Auction-based Scheduler (ABS)
We propose an online, incremental approach to solving the
DARP. At any point in time during generation of the fleet
schedule, all requests that have been received but not yet as-
signed to a vehicle are ordered by their respective preferred
pickup times (earliest first), and requests are assigned to ve-
hicles in a time forward manner (i.e., as the search moves for-
ward across the scheduling horizon). A vehicle assignment
to a given request r is considered only when its preferred
pickup time tprefr falls within a pre-specified lead time, lt
- i.e., tprefr − tnow ≤ lt. At this time, vehicle options for
handling r are computed and the vehicle that minimizes dis-
utility (defined as a function of added travel time) is chosen.

At the heart of the approach, the assignment of requests
to specific vehicles is adjudicated through a bidding process.
Each vehicle is viewed conceptually as an agent that privately
maintains its own schedule and interacts with an auctioneer
agent to bid for and accept additional customer requests. As
described in Algorithm 1, the auctioneer initiates the process
of assigning a request r by first requesting each vehicle agent
v to forecast its future geo-location at r’s preferred pickup
time (according to the commitments in v’s current schedule
Sv). This information provides a basis for determining the
set of proximal vehicle agents to request bids from. Specifi-
cally, a pre-specified maximum driving distance dmax, which
is incrementally relaxed if necessary until at least one vehi-
cle candidate is within range, is used to determine the set of
vehicle agents to request bids from (i.e., the set of vehicles
Vr) .1 If multiple bids are received, the auctioneer accepts the

1The need for dmax arises from computation reasons, due to the
fact that a serial implementation of the auction process is used. This
complication would not be strictly necessary if the implementation
was instead decentralized.

Algorithm 1 Assign-Request (r,V)

Input:
1: lpr ←pick up location of r
2: for all v in V do
3: d(lpr ,v) ←distance between v & lpr
4: end for
5: d←the maximum driving distance to lpr (initially dmax)
6: cmin ←∞
7: while cmin ==∞ do
8: for all v in V do
9: if d(lpr ,v) ≤ d then

10: c← Compute-Bid (v, r)
11: if c < cmin then
12: cmin ← c
13: vopt ← v
14: end if
15: end if
16: end for
17: d← d+ 1
18: end while
19: Assign-Request (r, vopt)

lowest cost bid, and the winning vehicle is notified to update
its schedule.

Algorithm 2 describes the bid computation procedure that
is carried out by individual vehicle agents in response to the
auctioneer query. The main objective of a vehicle agent is to
generate a feasible schedule that minimizes disutility (i.e., the
added cost of accommodating the new request). For a given
vehicle v with a current set of assigned requests Rv and cu-
mulative demand Dv , an optimal schedule Sv is generated by
solving the corresponding traveling salesman problem (TSP)
to produce the best ordering of requests in the schedule. For
the experiments reported later in this paper, Google’s OR-
Tools [Perron and Furnon,] are used to formulate an ex-
act TSP solution procedure and compute individual vehicle
schedules.

Looking in more detail at the bid computation in Algorithm
2, it can be seen that only vehicles with sufficient available
capacity to accommodate the new request r (i.e., (Dv +Dr ≤
Cv) will return a competitive bid. In the case that sufficient
future capacity is confirmed, a hypothetical schedule (S∗v) that
incorporates r is computed and compared with the vehicle’s
current schedule (Sv) to determine the incremental cost or
disutility associated with accommodating r. Specifically, for
each stop s in Sv that services a request with priority prs, let
ts denote the scheduled time of s in Sv and ts∗ denote the
scheduled time of s in S∗. Then

Cost =
∑
s∈Sv

disutil((ts − ts∗)), prs) (1)

where disutil is defined as:

disutil(∆t, pr) =

log2 ∆t pr=1
∆t pr=2
(∆t)2 pr=3

(2)

Cost is returned as the bid for request r.

Algorithm 2 Compute-Bid (v,r)

Input:
1: Cv ←capacity of vehicle v
2: Rv ←set of requests currently assigned to v
3: Dv ←cumulative demand of requests in Rv

4: Dr ←number of passengers in request r
5: TWv ← set of pickup windows < loc, est, lst > in Rv

6: Sv ←current schedule for v
7: if (Dv +Dr) > Cv then cv ←∞
8: else
9: S∗v ← TSP-Solve (Rv∪r, TWv ∪ < lpr , estr, lstr >)

10: if S∗v = then cv ←∞;
11: else
12: cv ← 0;
13: for all locations s in Sv do
14: t← scheduled time of s in Sv;
15: t∗ ← scheduled time of s in S∗v ;
16: delay ← t∗ − t
17: p← corresponding request priority of s
18: cv ← cv + disutil(delay, p)
19: end for
20: end if
21: end if
22: return cv

The intention of having different priority-based disutility
functions is to give higher importance to the requests with
higher priority, by making their cost functions asymptotically
different. In this way, the delay of a previously accepted pas-
senger with higher priority will result in a higher cost.

4 Benchmarking
To first benchmark our algorithm, we compare its perfor-
mance on a benchmark of challenging feasibility DARP in-
stances published by [Cordeau, 2006]. These problems have
been fairly extensively studied in the literature and have been
proven feasible/infeasible by sophisticated, extended search
techniques [Berbeglia et al., 2011] [Jain and Van Hentenryck,
2011].

The problems in the benchmark are randomly generated,
set inside a [-10, 10]x[-10, 10] grid, with the coordinates of
the pick-up and drop-off nodes chosen according to a uniform
distribution. The depot is located at (0, 0), the time horizon is
up to 12 hours, and the time windows are 15 minutes. There
are two sets of problems in the benchmark: for the instances
in set a, the vehicle capacity is 3 and for the instances in set b,
the vehicle capacity is 6. The maximum ride time constraint
is 30 minutes for set a and 45 minutes for set b.

Tables 1 and 2 give a comparison between our algorithm
and the algorithm from [Cordeau, 2006] on the instances in
problem sets a and b respectively that are known to admit fea-
sible solutions. As can be seen, ABS finds a feasible sched-
ule for every feasible instance in problem set a, but finds
a feasible schedule for only 2 of the 12 feasible instances
in problem set b. For those instances that were not feasibly
solved, the schedules generated by ABS satisfied 93% of the
input requests on average, with an average cumulative de-

Table 1: Comparison of feasible instances from problem set a

Instance Total Delay (min) CPU Time (Sec) % Requests Satisfied
ABS Cordeau ABS Cordeau ABS Cordeau

a2-16 0 0 0.093573 0.6 100 100
a2-20 0 0 0.115272 3 100 100
a2-24 0 0 0.127073 85.2 100 100
a3-18 0 0 0.16073 24.6 100 100
a3-24 0 0 0.196368 4595.4 100 100
a3-30 0 0 0.230494 14400 100 100
a3-36 0 0 0.253812 14400 100 100
a4-16 0 0 0.14405 1289.4 100 100
a4-24 0 0 0.207046 14400 100 100
a4-32 0 0 0.292053 14400 100 100
a4-40 0 0 0.4037 14400 100 100
a4-48 0 0 0.440826 14400 100 100

Table 2: Comparison of performance on feasible instances from
problem set b

Instance Total Delay (min) CPU Time (Sec) % Requests Satisfied
ABS Cordeau ABS Cordeau ABS Cordeau

b2-16 31 0 0.152909 12.6 87.5 100
b2-20 31 0 0.164435 0.6 90 100
b2-24 36 0 0.148558 165.6 91.66 100
b3-18 16 0 0.158972 77.4 94.44 100
b3-24 14 0 0.198912 436.2 95.83 100
b3-30 50 0 0.296693 11384.4 90 100
b3-36 46 0 0.260533 14400 94.44 100
b4-16 0 0 0.143746 146.4 100 100
b4-24 21 0 0.420327 3558.6 91.66 100
b4-32 0 0 0.274105 14400 100 100
b4-40 11 0 0.470664 14400 97.5 100
b4-48 8 0 0.55389 14400 97.92 100

lay of 26.4 minutes to those requests that could not be sat-
isfied within specified time window constraints. One factor
that likely contributed to the performance results obtained
by ABS is the fact that some of the requests in the dataset
from [Cordeau, 2006] specify a desired dropoff time instead
of a desired pickup time. Our algorithm takes in the desired
pickup time as part of the input and ensures that the passenger
is picked up within a pre-specified time window starting at the
desired pickup time. However, for those requests that speci-
fied a desired dropoff time instead of a desired pickup time,
it was necessary to back-calculate the desired pickup time by
subtracting the ride duration from the desired dropoff time,
and this pre-processing greatly decreased scheduling flexibil-
ity, making these requests harder to fulfill within the desired
dropoff window.

Table 3: Average Duration per Request

Set a Set b
Auction-Based 1.2367886179 1.2263719512

Cordeau 1.2085111789 1.3160442073

5 Real-World Application
As mentioned earlier, our Auction-based Scheduler (ABS)
was designed principally to provide a scalable basis for gen-
erating efficient schedules under a myriad of real-world con-
straints. To explore this performance objective, we consider a
reference data set introduced more recently by [Rubinstein et
al., 2012]. This data set characterizes the daily DARP faced
by ACCESS Transportation Systems (the paratransit organi-
zation that services Allegheny County in Southwestern PA),
where advance reservations for service must be combined
with dynamic “same day” transport requests. In this version

of the problem, the allowable time window for servicing a
pickup request spans the interval from 10 minutes before the
desired pickup time to 20 minutes after it. The maximum ride
time constraint for a given request is the maximum of 20
minutes or twice the direct transit time between the request’s
pickup and drop-off locations, and all trip durations should
be less than or equal to two hours. Trip durations are com-
puted as a function of time-of-day, meaning that trips carried
out during heavier traffic conditions (e.g., during rush hour)
will experience longer trip durations. A typical day’s opera-
tions by a given ACCESS service provider, involves up to 950
requests and 30-50 paratransit vehicles of 3 different types:

• Sedans - with capacity to carry four ambulatory passen-
gers

• Shoppers - with capacity to carry 14 ambulatory passen-
gers

• Vans - capable of carrying both ambulatory and
wheelchair passengers, with a maximum of 10 ambula-
tory, or four ambulatory and three wheelchair passengers

We compare the results produced by ABS on this data set
to those produced by the Generalized Task Swap (GTS) al-
gorithm that was originally developed to provide ACCESS
with a more effective, dynamic scheduling approach to their
problem [Rubinstein et al., 2012]. GTS is a controlled, iter-
ative improvement algorithm that attempts to insert new re-
quests into an existing schedule through some amount of re-
allocation. The basic intuition behind GTS is that, by reallo-
cating scheduled requests whose tasks overlap in time with
those in the new request, sufficient resource capacity can be
freed up to accommodate the new request. Within the scope
of algorithms that solve the paratransit scheduling problem,
GTS is the most scalable and has been shown to outper-
form other leading algorithms, such as Tabu Search and CP
[Berbeglia et al., 2011], on the benchmark reference prob-
lems considered earlier. GTS is specifically designed to han-
dle over-subscribed , where there is more demand than capac-
ity. Over-subscription often leads to increasing wait times and
can even result in failure to fulfill a subset of requests within
the specified time windows. Thus, GTS’s ability to re-plan
based on feedback from a constantly changing environment
gives it the flexibility to fulfill more requests than would oth-
erwise be possible.

5.1 Baseline Comparison
The ACCESS dataset used for experimentation consists of a
set of 902 requests for a single day, with a fleet of 36 vehi-
cles (12 sedans, 9 shoppers, and 15 vans) available to service
these requests. All requests are assumed to be known in ad-
vance and are auctioned in the order of their pickup times as
described earlier in Section 3.

A new request r is put forth for auction 30 minutes prior to
the specified pickup time. We set the initial value of dmax to 2
miles (this is the maximum distance between request pickup
and the projected vehicle location at pickup time). The prior-
ity parameter (ρ) of each request is set to zero. Travel duration
between locations is computed using ACCESS transportation
systems’ model. As per this model, a day is segmented into
rush-hour and non-rush-hour epochs. The duration function

takes lat/lon coordinate pairs, and start time of travel for O-
D pair of interest and in turn computes travel times based on
great-circle distance and epoch specific parameters.

Figure 1: Ride duration for ABS and GTS schedules on ACCESS
paratransit data

Trip Duration Distributions
Figure 1 presents the cumulative density functions (CDFs) of
ride durations for ABS and GTS algorithms. The best perfor-
mance is reflected by the curve farthest to the left. That curve
always has a distribution of ride durations that are smaller
than the others. Following inferences can be drawn from these
plots: First, 90th percentile ride durations are significantly
lower in the case of ABS as opposed to GTS. Second, when
compared to GTS, ABS was able to reduce the median ride
duration by 38.46%, mean duration by 44.87%, and maxi-
mum duration by 51.55%. Lastly, with regard to minimizing
the individual ride durations, ABS stochastically dominates
GTS.

5.2 Impact of Lead-time parameter
One parameter that we found to have a significant impact on
the scheduler performance was the lead time, that is the time
difference between the auction time and the desired pickup
time. We know that having a lead time that is too small is not
good, as it reduces the chance of the request being picked up
on time. However, we found that making the lead time too
long also caused the performance to deteriorate, as shown in
Figure 2. An explanation for this would be that increasing the
lead time would require each vehicle to extrapolate further
into the future to predict their location and availability. There
would be more time in which the vehicle’s schedule could
change, so the corresponding bid has an elevated uncertainty
attached to it. Thus, the ABS algorithm is not agnostic to the
lead time.

5.3 Request Priorities
In order to test the hypothesis of the ABS algorithm’s ability
to incorporate the notion of priority into schedule generation,
we considered a use case with three priority classes namely

Figure 2: CDFs of the scheduled ride duration times in seconds com-
paring 30min vs 45min lead times

low (ρ1), medium (ρ2), and high (ρ3) priorities. The associ-
ated disutility of these classes is given by:

disutil(∆t, ρ) =

log2 ∆t ρ1
∆t ρ2
(∆t)2 ρ3

(3)

As presented in Equation 3, the disutilities of low, medium,
and high priority classes are sublinear, linear, and exponential
in nature. Each request in the dataset is randomly assigned a
priority class. The unscheduled requests were then sorted in
increasing order of their earliest start time for pickups. Ride
duration results for each trip are assimilated and compared
against the ABS algorithm with no priorities as the baseline.
Table 4 summarizes these results. As it is evident from the ta-
ble, the median ride duration was improved by 12.5% for high
priority requests, remained the same for medium priority re-
quests, and deteriorated by 12.5% for low priority requests.
This trend suggests that the ABS algorithm is capable of gen-
erating schedules that reflect pre-specified user preferences.
The less pronounced trends in average ride duration statistics
indicates that ABS was able to accommodate the use prefer-
ences more effectively on requests with a shorter trip duration
than those with longer durations. Figure 3 presents similar re-
sults but in the form of CDFs.

5.4 Execution Uncertainty
To demonstrate the robustness of our algorithm and test it in a
more realistic scenario, we incorporated uncertainty into the
execution of our schedules. A certain percentage of the re-
quests were randomly chosen to be delayed; after these re-
quests were picked up, the amount of time to travel to the
next location was multiplied by a randomly determined fac-
tor. These factors were sampled from a Gaussian distribution
with a mean of 1.2 and a standard deviation of 0.1. This setup
more closely simulates the real world, where there are unex-
pected traffic delays or road closures.

Table 4: Ride Duration Statistics for Prioritization

Ride Duration (Sec)
Average MedianScenario

Base Case Prioritized % Impr Base Case Prioritized % Impr
Overall Trips 572 565 1.23 480 480 0.0
Priority 1 598 601 -0.44 480 540 -12.5
Priority 2 581 555 4.41 480 480 0.0
Priority 3 539 540 -0.32 480 420 12.5

Figure 4: Ride duration for ABS schedules with executional uncer-
tainty

In our experiments, we tested with delaying 10%, 25%,
and 50% of the requests. From Figure 4, we can see that
this added uncertainty only caused a small decrease in per-
formance. However, an interesting thing to note is that the
performance improved as we increased the percentage of de-
layed requests. This could be because each vehicle is reeval-
uating its schedule every time a request is delayed. More de-
layed requests lead to more reevaluations, and so allows each
vehicle to reorder the stops on its route if needed.

5.5 Sensitivity Analysis
Our original experiment results suggest that both ABS and
GTS algorithms are able to generate feasible schedules for all

the requests. However, as mentioned earlier, paratransit ve-
hicle schedules on a given day tend to be oversubscribed. In
order to quantify the change in algorithmic performance for
various levels of over-subscription, we conducted a sensitiv-
ity analysis by reducing the number of available vehicles by a
certain percentage of the original number. We conducted the
experiments with number of available vehicles set to 90%,
85%, and 75%. Table 5 summarizes the number of unsched-
uled requests and the additional delay needed to fit these re-
quests in the schedule.

Figure 5: Ride duration for ABS sensitivity analysis

The results indicate that ABS was able to generate feasi-
ble schedules for all the requests, whereas GTS was unable to
schedule some of the requests as the number of available vehi-

(a) All Requests (b) Priority 1 (c) Priority 2 (d) Priority 3

Figure 3: CDFs of the scheduled ride duration times in seconds, with priorities introduced

Table 5: Comparative Metrics for ABS & GTS

Metric Orig 90% 85% 75%
ABS GTS ABS GTS ABS GTS ABS GTS

Unscheduled 0 0 0 1 0 3 0 17
Total Delay (Min) 0 0 0 54.6 0 15.9 0 1035.7

Table 6: Summary of Duration Statistics (ABS)

Metric (sec) Resource Availability (ABS) GTS
100% 90% 85% 75% (100%)

Median 480 540 540 540 780
Average 572 652 668 745 1037
Maximum 2820 3540 3780 4260 5820

cles reduced. The average computational time for scheduling
a new request is 0.92 seconds for ABS, and 6.7 seconds for
GTS suggesting that both ABS and GTS are well within the
usability constraints for dynamic DARP problems.

We further explored the robustness of ABS algorithm by
analyzing the statistical similarities/differences among vari-
ous resource availability scenarios described above. Figure
5 presents the CDFs of ride durations for these scenarios.
Larger variation in higher percentiles among the CDFs sug-
gests that the reduction in resources had a higher impact on
the ride durations of longer trips than it did on the shorter
trips. Table 6 presents the summary statistics of ride durations
for various ABS scenarios. These results suggest that even the
most constrained ABS scenarios (75% resource availability)
outperformed GTS with 100% resource availability.

6 Conclusion
In this paper, we have presented a scalable auction-based
scheduler framework for addressing dynamic dial-a-ride
problems. In addition to being able to accommodate real-
world constraints, we have also shown that the ABS algorithm
is capable of generating schedules that reflect pre-specified
user preferences. Our scheduling algorithm was evaluated on
a set of synthetic benchmark problems from the literature and
on a real-world paratransit scheduling problem, compared
against the Generalized Task Swap algorithm. The results
show that ABS significantly improved on the results of the
current state-of-the-art algorithm, GTS, in terms of both de-
creasing ride duration and utilizing resources more efficiently.
We also incorporated request urgency and tested in scenarios
with execution uncertainty. In the future, we will test differ-
ent priority functions to see whether the cost functions need
to be asymptotically different.

References
[Beaudry et al., 2010] Alexandre Beaudry, Gilbert Laporte,

Teresa Melo, and Stefan Nickel. Dynamic transportation
of patients in hospitals. OR spectrum, 32(1):77–107, 2010.

[Berbeglia et al., 2011] Gerardo Berbeglia, Gilles Pesant,
and Louis-Martin Rousseau. Checking the feasibility of
dial-a-ride instances using constraint programming. Trans-
portation Science, 45(3):399–412, 2011.

[Cordeau, 2006] Jean-François Cordeau. A branch-and-cut
algorithm for the dial-a-ride problem. Operations Re-
search, 54(3):573–586, 2006.

[Ho et al., 2018] Song Guang Ho, Ramesh Ramasamy
Pandi, Sarat Chandra Nagavarapu, and Justin Dauwels.
Multi-atomic annealing heuristic for the dial-a-ride prob-
lem. In 2018 IEEE International Conference on Service
Operations and Logistics, and Informatics (SOLI), pages
268–273. IEEE, 2018.

[Horn, 2002] Mark ET Horn. Fleet scheduling and dispatch-
ing for demand-responsive passenger services. Trans-
portation Research Part C: Emerging Technologies,
10(1):35–63, 2002.

[Jain and Van Hentenryck, 2011] Siddhartha Jain and Pascal
Van Hentenryck. Large neighborhood search for dial-a-
ride problems. In International Conference on Principles
and Practice of Constraint Programming, pages 400–413.
Springer, 2011.

[Knörr et al., 2011] W Knörr, S Seum, M Schmied,
F Kutzner, and R Anthes. Ecological transport informa-
tion tool for worldwide transports. In Methodology and
data update. IFEU Heidelberg, Oko-Institut, 2011.

[Pandi et al., 2018] Ramesh Ramasamy Pandi, Song Guang
Ho, Sarat Chandra Nagavarapu, Twinkle Tripathy, and
Justin Dauwels. Gpu-accelerated tabu search algorithm for
dial-a-ride problem. In 2018 21st International Confer-
ence on Intelligent Transportation Systems (ITSC), pages
2519–2524. IEEE, 2018.

[Paquette et al., 2012] Julie Paquette, François Bellavance,
Jean-François Cordeau, and Gilbert Laporte. Measuring
quality of service in dial-a-ride operations: the case of a
canadian city. Transportation, 39(3):539–564, 2012.

[Perron and Furnon,] Laurent Perron and Vincent Furnon.
Or-tools.

[Psaraftis, 1980] Harilaos N Psaraftis. A dynamic program-
ming solution to the single vehicle many-to-many imme-
diate request dial-a-ride problem. Transportation Science,
14(2):130–154, 1980.

[Rubinstein et al., 2012] Zachary B Rubinstein, Stephen F
Smith, and Laura Barbulescu. Incremental management
of oversubscribed vehicle schedules in dynamic dial-a-ride
problems. In Twenty-Sixth AAAI Conference on Artificial
Intelligence, 2012.

[Wilson et al., 1971] Nigel HM Wilson, Joseph M Sussman,
Ho-Kwan Wong, and Trevor Higonnet. Scheduling algo-
rithms for a dial-a-ride system. Massachusetts Institute of
Technology. Urban Systems Laboratory, 1971.

	Introduction
	Problem Formulation
	Auction-based Scheduler (ABS)
	Benchmarking
	Real-World Application
	Baseline Comparison
	Trip Duration Distributions

	Impact of Lead-time parameter
	Request Priorities
	Execution Uncertainty
	Sensitivity Analysis

	Conclusion

