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Abstract
Time-series forecasting is a widely used data sci-
ence technique for predicting the future state of
stochastic mechanisms. Application domains that
benefit from such practices include stock mar-
kets, inventory planning, supply chain manage-
ment, healthcare, and resource allocation under un-
certainty. In recent years, deep learning has in-
creasingly become the method of choice in time-
series forecasting applications where historical data
is abundant. Alternatively, frequentist approaches
are quite popular in applications where historical
data is limited, but their underlying assumption of
stationary data tends to restrict their performance.
This paper considers an alternative approach to
small data applications, extending a Bayesian
sequential learning technique to overcome this
shortcoming. Historically, Bayesian learning ap-
proaches have suffered from scalability problems
when applied to time-series forecasting due to the
Bayesian estimation step’s complexity. Contempo-
rary Bayesian approaches utilize Markov Chain
Monte Carlo methods such as Metropolis-Hastings
and Hamiltonian Monte Carlo for this purpose.
While these methods have proved useful for of-
fline time-series analysis, their computational re-
quirements limit their utility in online, high tem-
poral frequency forecasting. We propose substitut-
ing Nested Sampling, another method for estimat-
ing Bayesian evidence, as a means of achieving
a scalable time-series forecasting framework. We
demonstrate our approach’s effectiveness via com-
parative experimental analysis on three prediction
problems of practical interest.

1 Introduction
Time-series forecasting plays an instrumental role in predict-
ing the evolution of complex systems. Application domains
that benefit from such techniques include inventory planning
[Kourentzes et al., 2020], supply chain management [Abol-
ghasemi et al., 2020], financial stock markets [Sezer et al.,
2020], healthcare [Kaushik et al., 2020], and engineering sys-
tems [Yang et al., 2011].

Advances in machine learning have provided new tech-
niques for predicting the behavior of complex systems over
time. Forecasting techniques such as support vector machines
[Balabin and Lomakina, 2011], hidden or state-observer
Markov models [Kong et al., 2011], Bayesian non-parametric
models [Ko and Fox, 2009], and deep learning models [Sezer
et al., 2020] have been employed for this purpose. For time-
series forecasting, deep learning has become the preferred
model of choice in recent years [Sejnowski, 2020]. However,
as pointed out in [Dargan et al., 2020], deep learning’s ma-
jor challenge is the requirement of abundant data. As the data
becomes scarce, simpler frequentist learning models such as
Autoregressive Integrated Moving Average (ARIMA) [Box
et al., 2015] tend to perform better and are generally still pre-
ferred as long as the assumption of stationary data is viable.

Recent work has proposed an alternative, Bayesian sequen-
tial learning framework for time-series forecasting in small
data applications and demonstrated its effectiveness in a par-
ticular setting: predicting bus dwell times at city bus stops
[Isukapati et al., 2020]. This approach is interesting because it
overcomes the stationary data limitation of ARIMA models.
However, like other Bayesian learning approaches, the pro-
posed framework suffers from the high computational cost of
performing the Bayesian estimation step on each cycle, which
minimally restricts its use to offline analysis settings. It effec-
tively precludes its application to most time series forecasting
problems of practical interest.

In this paper, we present a computationally scalable vari-
ant of the Bayesian sequential learning framework proposed
in [Isukapati et al., 2020]. We focus specifically on improv-
ing the efficiency of the Bayesian estimation step of their
procedure, which utilizes the Metropolis-Hastings algorithm
[Metropolis et al., 1953; Hastings, 1970]. Such Markov Chain
Monte Carlo (MCMC) methods are commonly employed for
this purpose in Bayesian learning settings, and Metropolis-
Hastings is a popular choice. However, despite their power
and practical utility, MCMC methods have a couple of lim-
itations that affect their computational efficiency. First, the
algorithms’ samples are necessarily correlated, thereby re-
sulting in reduced effective sample size and larger error in
posterior estimates, which can necessitate a longer sampling
process. Second, MCMC methods’ efficiency depends on de-
signing a useful likelihood function - a difficult task for high-
dimensional spaces. While methodological advances help



mitigate these issues, their usefulness is limited in sequential
Monte Carlo methods.

To achieve greater efficiency in the evidence evalua-
tion step, we replace Metropolis-Hastings with another type
of sampling procedure: Nested sampling [Skilling, 2006].
Nested Sampling gains efficiency because it evaluates the ev-
idence directly from the prior by computing the cumulative
prior function conditioned over the likelihood values. Based
on the past samples, it directly discards one sample in each
iteration, which corresponds to the least likelihood value. To
our knowledge, this is the first time that the Nested Sampling
methodology has been used in this context.

We evaluate the revised framework’s performance on three
distinct time-series forecasting problems from the literature,
including the bus dwell time problem studied in [Isukapati
et al., 2020]. Metropolis-Hastings and Hamiltonian Monte
Carlo (HMC), another well-known MCMC method, are used
as benchmarks to evaluate computational efficiency. The
Long Short-Term Memory (LSTM) [Hochreiter and Schmid-
huber, 1997] deep learning model and an ARIMA model are
compared to assess prediction accuracy. Results show that
Nested Sampling yields several orders of magnitude speedup
over the MCMC methods with minimal accuracy loss. On all
three problems, the approach achieves greater accuracy than
LSTM and ARIMA while improving on the results reported
in [Isukapati et al., 2020] in the process.

The rest of the paper is organized as follows. First, we de-
scribe our revised Bayesian sequential learning framework
for time series forecasting. Next, we present a comparative
experimental analysis of the approach and analyze its scala-
bility and prediction accuracy relative to relevant competing
techniques. Finally, we summarize the main contributions of
the paper and briefly indicate directions of future work.

2 Bayesian Sequential Learning Framework
We propose a novel extension to a Bayesian sequential learn-
ing framework for time-series forecasting that follows a
rolling Bayesian update scheme inherently. The idea was first
proposed in [Isukapati et al., 2020] and involves selecting a
likelihood function offline that best fits the available histori-
cal data and then adaptively refining the model’s parameters
in the light of new data. Often, small historical datasets are
sufficient in the defensible construction of such likelihoods,
thereby eliminating the need for extensive training datasets.
This process results in a lightweight framework that natu-
rally adapts to the underlying non-stationary stochastic pro-
cess while quickly improving by updating its parameters as
and when new data arrives.

The framework consists of two significant steps: (1) Se-
lect a likelihood function that best fits the empirical data dis-
tribution. To perform this, we first chronologically order the
dataset and then compute the observed data distribution us-
ing the Kernel Density Estimation (KDE) technique. Further-
more, we fit a set of chosen analytic distributions generally
taken based on their applicability in survival analysis and
compute the Maximum Deviation Test (MDT) scores [Isuka-
pati and List, 2016]. This score is defined as the number
of percentile values in an analytic fit within a user-defined

Algorithm 1: Bayesian Sequential Learning Frame-
work

Input: Dt,M
/* Dt - current covariate information, */
/* M - most recent parameter samples */
Output: P
/* P - Prediction of the next data point */

1 Initialize the samplers by defining the chosen
likelihood and prior functions

2 while t <∞ do
3 if M is not None then
4 Z,R← Samples of the parameters using Dt

5 Initialize S to store the samples of the variable
to predict

6 foreach parameter sample Ri do
7 Si ← Perform inverse transformation of

the parametric distribution using Ri
8 Update S to store this new point Si
9 Smedian ← median of each sublist in S

10 P ← mean of Smedian
11 Utilize evidence Z to form the posterior

distribution
Yield: P

12 KM ← Compute set of Kernel Density Estimates
for each parameter in M

13 M ← Generate samples of approximate posterior
distribution using some sampling methodology
using old M , the likelihood function, and pt

threshold of empirical data distribution; (2) Choose a prior
distribution for each likelihood function parameter. This is a
fairly straightforward process – one can either choose a pre-
dictive prior based on a historical dataset, which need not be
very large, or an uninformed prior in the absence of such data.
A unique feature about any Bayesian approach is that the im-
pact of the prior on the posterior predictive distribution di-
minishes as more Bayesian updates are made in the light of
new data.

Finally, to bootstrap the system, the framework sets prior
distributions for all model parameters in the hierarchy. Once
data is observed, a Bayesian update is performed to obtain
the set of posterior distributions. These distributions are then
used as priors for the next Bayesian update and are used to ob-
tain the posterior predictive distribution of the target variable.
Algorithm 1 summarizes specific details of this framework.

As demonstrated in [Isukapati et al., 2020], this frame-
work proved to be quite useful in accurately predicting bus
dwell times in comparison to both deep learning and linear re-
gression models. Simultaneously, the methodology relies on
Metropolis-Hastings, a MCMC-based sampling technique,
for estimating the Bayesian evidence at each step, which is
quite expensive computationally and significantly limits the
overall scalability of the approach. Many time series forecast-
ing problems require online prediction, as data is acquired in-
crementally during execution.

To counter this disadvantage, we propose substituting a
lesser-known sampling technique called Nested Sampling



[Skilling, 2006] to improve the efficiency of estimating
Bayesian evidence at each step of the analysis. As noted ear-
lier, Nested Sampling has the attractive property that it eval-
uates the evidence directly from the prior by computing the
cumulative prior function conditioned over the likelihood val-
ues. The evidence then becomes a one-dimensional integral
over a unit range in which the integrand is given by the in-
verse of the cumulative prior function. Historically, Nested
Sampling has been used as an alternative evidence estima-
tion method in snapshot characterization of time-series data
sets. But this application to time-series forecasting is new.
The technical details of this sampling method are summarized
below.
Nested Sampling works on the principle that, for a
positive-valued random variable, the area above the cumu-
lative distribution function (CDF) is given by the expected
value of the random variable.∫ ∞

0

(1− F (x))dx =

∫ ∞
0

xf(x)dx ≡ E(X)

where, X is a random variable with probability density func-
tion (PDF) f and CDF F .

Let θ be the set of parameters in a multi-dimensional space,
π(θ) denote prior likelihood of these parameters, and L rep-
resents the likelihood on data D given θ. Then, the evidence
is provided by

F (λ) =

∫
L(D|θ)≥λ

π(θ)dθ

X(λ) ≡ 1− F (λ) =
∫
L(D|θ)≥λ

π(θ)dθ∫
θ

L(D | θ)π(θ)dθ =
∫ 1

0

X−1(p)dp

Please note that even if the set of parameters θ is multi-
dimensional, the function X−1 is always one-dimensional
and monotonic. The methodology employs the following
steps to preclude the likelihood from diffusing, especially
in high-dimensional spaces: 1) It samples the first N points
from the previous π and determines their corresponding like-
lihoods; 2) It uses the minimum of these likelihood values Li
to estimate the (N−1)th quantile and removes this point from
N ; 3) It samples a new point from the prior satisfying the
condition L(D|θ) > Li; 4) The new set of N points is treated
as a set of N independent random draws from the restricted
prior and the smallest likelihood among these points gives the
estimate of X−1((N−1N )i); 5) Multiple repetitions of steps 2
and 3 ensure the sampling of points from higher likelihood
regions. The evidence is calculated using a weighted sum ap-
proach where each new point’s weight is computed as the
width between the latest and the preceding points. The pro-
cess is terminated when the width falls below a user-defined
threshold; 6) Numerical integration techniques such as trape-
zoidal rule are employed to approximate the evidence on sam-
ple points generated by step 5.

Finally, previously computed Bayesian evidence in con-
junction with the inverse transformation of the parametric dis-
tribution representing the target variable is used in calculating

the posterior likelihood. Algorithm 2 provides a high-level
overview of the Nested Sampling algorithm.

Algorithm 2: Nested Sampling
Input: N , M , L, π
/* N - number of live points, M - number of iterations,
L - likelihood function, π - prior function */

Output: Z, θ
/* Z - total evidence, θ - final set S of parameter

proposals where |S| = N */
1 Start with N points θ1, · · · , θN from the prior π
2 Initialize Z = 0, X0 = 1
3 for j ← 0 to M do
4 Record the lowest of current likelihood values as

Lj
5 θj is the point corresponding to Lj
6 Xj ← exp(− j

N )
/* Xj is an estimate of the prior mass covered by

the hyper-volume in parameter space of all
points with likelihood greater than θj */

7 wj ← Xj−1 −Xj

/* wj is the estimate of the amount of the prior
mass between two nested hyper-surfaces */

8 Z ← Z + Ljwj
9 Replace θj by new sample drawn from prior π(θ)

constrained by L(θ) > Lj .

10 Z ← Z +
(L(θ1)+L(θ2)+···+L(θN ))Xj

N
11 θ ← (θ1, θ2, · · · , θN )
12 return Z, θ

3 Computational Experiments
The experiments presented below were designed with the fol-
lowing objective: (1) to quantify the computational benefit of
incorporating nested sampling, (2) to demonstrate the ability
of the framework to learn underlying system characteristics
and accurately predict when historical data is sparse, and (3)
to demonstrate the ability of the framework to handle both
stationary and non-stationary stochastic mechanisms.

Three use-cases from different disciplines were consid-
ered: one canonical example, the transportation use-case con-
sidered in [Isukapati et al., 2020], and another use-case from
astrophysics. Each draws on a publicly available data set, and
there is variation in parameter dimensionality across all three
use-cases.

The PyMC3 [Salvatier et al., 2016] library was used to
implement Metropolis-Hastings and HMC, and the Dynesty
[Speagle, 2019] library was used to implement Nested Sam-
pling. For the LSTM model, we utilized the Keras library
[Chollet and others, 2015], and for the ARIMA model, we
used the Statsmodels library [Seabold and Perktold, 2010].
All experiments were run on a 4th generation Intel Haswell
processor running at 3.60GHz clock speed with four cores
and two hardware-level threads. The framework itself was
developed in Python3.5, and the source code will be made
available.



3.1 Mackey-Glass Sequence
The Mackey-Glass time-series [Mackey and Glass, 1977] se-
quence is a stationary stochastic process that generates time-
series samples from a non-linear differential delay equation.
The discrete realization [Matous, 2019] of this equation is
given by,

xt+1 = a
xd

b+ xed
+ cxt

where a, b, c, e are treated as the unknown parameters and d
represents the (t − d)th data point. For the purpose of ex-
periments we set a = 0.2, b = 0.8, c = 0.9, d = 17,
e = 10 and the initial value of the sequence x0 = 0.1
and generated a 1000 length sequence. In the context of
Bayesian sequential learning framework for time-series fore-
casting, the Mackey-Glass sequence x is modeled using a
Gaussian function N (.|x, s2) with parameter space given by
θ = (a, b, c, e, s). On the other hand, this sequence’s LSTM
model involves constructing LSTM layers with hidden unit
sizes of 5 for each cell. A split ratio of 0.2 is used for divid-
ing the sequence data into train, validation, and test datasets.
Mean-squared error (MSE) and the Adam optimizer [Kingma
and Ba, 2015] are used to train the model. The validation
set is used to compute the optimal hyperparameters of the
LSTM model. The training process is terminated if the vali-
dation accuracy does not improve significantly in the subse-
quent epochs. For ARIMA, we tune the model to fit the train-
ing data to identify the p, d, and q parameters depending on
goodness of fit characterized by the model’s AIC score.

Figure 1 presents plots for predicted vs actual sequence
values. It contains five subplots - one for each method. As
can be seen, all three sampling techniques significantly out-
performed LSTM and ARIMA in terms of accuracy given by
MSE. Table 1 summarizes the accuracy and average compu-
tational time statistics for each method. We varied the number
of samples between [100, 750] for sampling methods and the
look-behind window between [1, 20] for LSTM. The sum-
mary tables suggest that the average maximum computational
times of Metropolis-Hastings, HMC, and Nested Sampling
are around 431, 237, and 0.08 seconds respectively, implying
that Nested Sampling performs up to 5 orders of magnitude
better than the other benchmarks.

Additionally, it can be observed that the computation times
of Nested Sampling scaled linearly as opposed to Metropolis-
Hastings and HMC. The LSTM model results are in line with
the findings in [Gers et al., 2001] as the model could not
capture the sequence’s underlying patterns. Furthermore, the
ARIMA model also had a hard time capturing the model’s
trends as it tends to converge to a mean value after a few pre-
dictions.

3.2 Bus Dwell Time
Accurate prediction of bus dwell times at bus stops can im-
prove real-time traffic signal control performance by improv-
ing the accuracy of the vehicle intersection arrival models
used to drive traffic signal decisions. To enable this possi-
bility, [Isukapati et al., 2020] considered this problem using
the historical Advanced Vehicle Location (AVL) dataset pro-
vided by the Port Authority of Allegheny County for two ma-

jor bus routes. Following the procedure described in Section
2, [Isukapati et al., 2020] found that the Fisk distribution of-
fered the best fit to this data, and we similarly have adopted
this conclusion. The model developed can be described as fol-
lows,

X = exp(Y ) (where Y ∼ Logistic(µ, s))

µ = ln(α) = ln(βTαx+ β0)

s = 1/τ = 1/(βTτ x)

βα =
[
βon
α βoff

α

]T
βτ =

[
βon
τ βoff

τ

]T
x = [xon xoff]

T

Here βα, βτ and β0 represent the parameters with x rep-
resenting the covariate information. At any given time, the
belief of the two parameters µ and s describe the current be-
lief of bus dwell time distribution. Note that this model also
has a 5-dimensional parameter space; hence we make use of
the same LSTM model described in 3.1.

Table 2 summarizes the results obtained for the bus dwell
time prediction use-case. The Nested Sampling method is
seen to outperform both MCMC-based sampling-based meth-
ods and improve the results reported in [Isukapati et al.,
2020], both in accuracy and computational efficiency, and ir-
respective of the variance in the underlying dataset associated
with different bus stops.

It is interesting to note that although the LSTM model gen-
erally under-performed, it did produce better results than the
revised framework at Negley Ave at #370. This superior per-
formance can be attributed to the low underlying variance
within the data stream at that stop. The ARIMA model ul-
timately failed to estimate the data trends mostly because it is
highly stochastic and non-stationary.

3.3 Radial Velocity

Radial velocity [Sharma, 2017] of an object with respect to
a reference point is defined as the rate of change in distance
between that point and the object itself. The estimation of
radial velocity is a stationary stochastic process, and it is in-
strumental in discovering new planets. An exoplanet around
a companion star causes temporal variations in the radial ve-
locity measurement of that star. One can analyze and deduce
the ratio of masses between the planet and the companion
star and additional orbital parameters like eccentricity. Math-
ematically, the radial velocity of a star of mass M in a binary
system with an exoplanet of massm in an orbit of time period
T , inclination I , and eccentricity e can be defined as follows,

v(t) = κ[cos(f + ω) + e cosω] + v0

where,



(a) Metropolis-Hastings (b) Hamiltonian Monte Carlo (c) Nested Sampling

(d) LSTM (e) ARIMA

Figure 1: Performance of the methodologies applied on the Mackey-Glass sequence.

Bayesian Sequential
Learning Framework

Deep Learning
Based

Frequentist
Based

Metropolis
Hastings

Hamiltonian
Monte Carlo

Nested
Sampling LSTM ARIMA

# MSE Time(s) MSE Time(s) MSE Time(s) φ MSE Time(s) ρ MSE Time(s)
100 0.0013 67.6050 0.0006 115.1488 0.0906 0.0107 1 0.1264 8.2421 0.5 0.1134 0.5891
250 0.0005 318.0218 0.0004 407.5559 0.0262 0.0258 5 0.0721 18.6681 0.6 0.1130 0.5341
500 0.0010 427.3962 0.0001 88.6842 0.0128 0.0538 10 0.0857 47.9600 0.7 0.1052 0.6728
750 0.0006 431.3002 0.0006 237.6586 0.0104 0.0823 20 0.1245 44.1125 0.8 0.1014 0.8274

Table 1: Summary of model performances under Mackey-Glass Sequence prediction. # represents the number of samples used by the
sampling-based algorithms, φ represents the look-behind window length for the LSTM model, and ρ represents the split ratio of the dataset

which decides on how much training data should be used to fit the frequentist model

κ =
(2πG)1/3m sin I

T 1/3(M +m)2/3
√
1− e2

tan(f/2) =

√
1 + e

1− e
tan(u/2)

u− e sinu =
2π

T
(t− τ)

Here, I is the inclination of the orbital plane with respect
to the sky, ω is the angle of the pericenter measure from the
point where the orbit intersects the plane of sky in radians, τ
is the time of passage through the pericenter, v0 is the mean
velocity of the center of mass of the binary system and G
is the universal gravitational constant. Since T , I , and e are
known, this makes κ a constant as well, which we can fix
independently. Additionally, f is defined as the true anomaly
function which depends on e, T and τ . This means that by

just varying e, κ, T , τ , v0 and ω one can generate a sequence
of radial velocity (v(t)) data. Given the above formulation,
one can model it via a Gaussian function N (.|v, s2). With
this we can define the parameter space of this model as θ =
(v0, κ, ω, τ, T, e, s)

For the purpose of experiments we generated a 1000 length
radial velocity data sequence with v0 = 0, κ = 0.15, T =
350, e = 0.3, τ = 87.5 and ω = −90. We followed a similar
experimentation procedure as in Section 3.1 with only one
major change with regards to the LSTM network. The number
of hidden units in an LSTM layer for each cell were increased
from 5 to 7. We also dropped consideration of MCMC-based
sampling variants in the comparative analysis, as their lack of
scalability is clear from the first two use-cases.

As indicated in Figure 2, the Nested Sampling method out-
performs the LSTM and ARIMA models in terms of accu-
racy and computational expense. The most important take-



Bayesian Sequential
Learning Framework

Deep Learning
Based

Frequentist
Based

Metropolis
Hastings

Hamiltonian
Monte Carlo Nested Sampling LSTM ARIMAVariance Bus Stop

# Acc Time(s) # Acc Time(s) # Acc Time(s) # Acc Time(s) # Acc Time(s)
Centre Ave

Opp Shadyside Hos 600 0.77 9.26 10000 0.74 128.10 900 0.79 0.29 NA 0.49 22.67 NA 0.00 5.76

Low Negley Ave
at #370 900 0.89 9.20 10000 0.91 139.12 1000 0.88 0.32 NA 0.88 6.07 NA 0.00 0.33

Centre Ave
at Morewood Ave 1000 0.71 11.39 10000 0.67 73.02 1000 0.74 0.26 NA 0.38 32.45 NA 0.02 4.67

Medium Centre Ave
at Cypress St 200 0.71 7.50 15000 0.63 244.81 1000 0.73 0.26 NA 0.44 10.09 NA 0.04 3.14

Negley Ave
at Centre Ave 700 0.47 8.58 600 0.46 49.44 700 0.5 0.19 NA 0.17 46.63 NA 0.00 14.92

High Centre Ave
at Aiken Ave 1000 0.59 10.02 1000 0.53 76.46 200 0.66 0.05 NA 0.22 18.04 NA 0.03 4.48

Table 2: Summary of model performances under Bus Dwell Time prediction use-case. # represents the number of samples used by the
sampling-based algorithms.

(a) Nested Sampling (b) LSTM (c) ARIMA

Figure 2: Performance of the methodologies applied on the radial velocity prediction use-case.

Bayesian Sequential
Learning Framework

Deep Learning
Based

Frequentist
Based

Nested Sampling LSTM ARIMA
# MSE Time(s) φ MSE Time(s) ρ MSE Time(s)

100 0.0015 0.0899 1 0.0124 7.7335 0.5 0.0130 0.8028
250 0.0021 0.2371 5 0.0054 16.9276 0.6 0.0390 1.0157
500 0.0015 0.4913 10 0.0092 29.6531 0.7 0.0420 0.9140
750 0.0016 0.6958 20 0.0113 46.8196 0.8 0.0016 0.9140

Table 3: Summary of model performances under Radial Velocity prediction use-case. # represents the number of samples used by the
sampling-based algorithms, φ represents the look-behind window length for the LSTM model, and ρ represents the split ratio of the dataset

which decides on how much training data should be used to fit the frequentist model

away from this experiment is that the proposed extension to
the Bayesian sequential learning framework for time-series
forecasting is quite broadly applicable, and that nested sam-
pling is an efficient alternative to the MCMC-based sampling
methodologies in any Bayesian learning context.

4 Conclusions and Future Work
In this paper, we have presented a Bayesian sequential learn-
ing framework for time-series forecasting that combines
Bayesian inference techniques with Nested Sampling to gen-
erate accurate predictions in a computationally efficient man-
ner, especially when the availability of training data is scarce.
Computational experiments conducted in 3 distinct time-

series forecasting problem domains showed an efficiency gain
of several orders of magnitude over an analogous Bayesian
learning framework that alternatively utilizes a contemporary
MCMC sampling method while retaining comparable predic-
tion accuracy. Results also showed an improvement in accu-
racy in all problems over a deep learning based LSTM model
and a frequentist based ARIMA model, indicating the poten-
tial of the approach in small data applications.

Looking forward, we believe that Nested Sampling can
be more broadly leveraged in other learning frameworks that
currently utilize MCMC-based sampling methods. One focus
of future research will be an investigation of its utility in hi-
erarchical Bayesian modeling paradigms.
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